Solubility of aqueous methane under metastable conditions: implications for gas hydrate nucleation.

نویسندگان

  • Guang-Jun Guo
  • P Mark Rodger
چکیده

To understand the prenucleation stage of methane hydrate formation, we measured methane solubility under metastable conditions using molecular dynamics simulations. Three factors that influence solubility are considered: temperature, pressure, and the strength of the modeled van der Waals attraction between methane and water. Moreover, the naturally formed water cages and methane clusters in the methane solutions are analyzed. We find that both lowering the temperature and increasing the pressure increase methane solubility, but lowering the temperature is more effective than increasing the pressure in promoting hydrate nucleation because the former induces more water cages to form while the latter makes them less prevalent. With an increase in methane solubility, the chance of forming large methane clusters increases, with the distribution of cluster sizes being exponential. The critical solubility, beyond which the metastable solutions spontaneously form hydrate, is estimated to be ~0.05 mole fraction in this work, corresponding to the concentration of 1.7 methane molecules/nm(3). This value agrees well with the cage adsorption hypothesis of hydrate nucleation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nucleation of gas hydrates

The kinetics of nucleation of one-component gas hydrates in aqueous solutions are analyzed. The size of the hydrate nucleus and the work for nucleus formation are determined as functions of the supersaturation Dm: Expressions for the stationary rate J of hydrate nucleation are derived. These expressions describe the JðDmÞ dependence for homogeneous nucleation and for heterogeneous nucleation at...

متن کامل

Driving Force for Nucleation of Multi-Component Gas Hydrate

Based on driving force for crystallization of one-component gas hydrate, in this report an expression for the supersaturation for crystallization of multicomponent gas hydrate is derived. Expressions for the supersaturation are obtained in isothermal and isobaric regimes. The results obtained are applied to the crystallization of hydrates of mixtures of methane plus ethane and can apply to ...

متن کامل

Relating Gas Hydrate Saturation to Depth of Sulfate- Methane Transition

Gas hydrate can precipitate in pore space of marine sediment when gas concentrations exceed solubility conditions within a gas hydrate stability zone (GHSZ). Here we present analytical expressions that relate the top of the GHSZ and the amount of gas hydrate within the GHSZ to the depth of the sulfate-methane transition (SMT). The expressions are strictly valid for steady-state systems in which...

متن کامل

Observations related to tetrahydrofuran and methane hydrates for laboratory studies of hydrate-bearing sediments

[1] The interaction among water molecules, guest gas molecules, salts, and mineral particles determines the nucleation and growth behavior of gas hydrates in natural sediments. Hydrate of tetrahydrofuran (THF) has long been used for laboratory studies of gas hydrate-bearing sediments to provide close control on hydrate concentrations and to overcome the long formation history of methane hydrate...

متن کامل

Experimental Measurement of Methane and Ethane Mole Fractions during Gas Hydrate Formation

The super-saturation condition has to be provided to form gas hydrates. Consequently, the prediction of the guest molecule fraction in the aqueous phase is crucial in the study of the gas hydrate kinetics. In the present work, several experiments were carried out in a semi-batch reactor in order to determine the mole fraction of methane and ethane during gas hydrates formation (growth stage...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. B

دوره 117 21  شماره 

صفحات  -

تاریخ انتشار 2013